UNIVERSITAS AIRLANGGA



Detail Article

Jurnal Biometrika dan Kependudukan

ISSN 2302707X

Vol. 3 / No. 2 / Published : 2014-12

Order : 8, and page :151 - 159

Related with : Scholar   Yahoo!   Bing

Original Article :

Analisis spasial faktor determinan incident rate difteri

Author :

  1. Puguh Saneko*1
  2. Arief Wibowo *2
  3. Soenarnatalina Melaniani*3
  1. Mahasiswa Fakultas Kesehatan Masyarakat
  2. Dosen Fakultas Kesehatan Masyarakat
  3. Dosen Fakultas Kesehatan Masyarakat

Abstract :

ABSTRACT Ordinary Least Square (OLS) regression is ineffective when problem of residual assumptions is found. It indicate the existence of spatial effect. The solution is the use of spatial analysis. Spatial Durbin Models (SDM) is a special case in spatial autoregressive model, when spatial lag effect is found in the dependent and independent variable. It was developed because at the many cases, the spatial dependencies not only in the dependent variable, but also independent variable. The objective of study to analyze determinant factors of diphtheria’s incidence in Jombang regency in 2012 through spatial modeling. The study was conducted at 34 working area of public health centre in Jombang regency. Data was collected from Jombang regency health profile in 2012. Modelling of the relationship between dependent variable and independent variable in the Ordinary Least Square (OLS), Spatial Auto regressive Models (SAR), Spatial Error Models (SEM) and Spatial Durbin Models (SDM). The models was compared to find the best model. The results showed the spatial durbin models (SDM) is the best model on determinant factor analysis of incident rate diphtheria in Jombang regency, with lowest AIC value and LR test results showed simultaneous independent variables affect the dependent variable at α 5%. Determinant factor of incident rate difteri is proportion of age, proportion of nutritional status, ratio of imunization target and officers, residential density. Keyword: spatial, spatial durbin models, diphtheria

Keyword :

spatial, spatial durbin models, diphtheria,


References :

  1. Devi, M, (2010). Analisis Faktor-faktor yang Berpengaruh Terhadap Status Gizi Balita di Pedesaan, . Vol 33, No 2, September 2010, p: 183–192 : Teknologi dan Kejuruan,
  2. Gujarati, N.D., (2003). Basic Econometrics. 4 ed.. New York : McGraw-Hill Companies, Inc. th
  3. Kartono B., Purwana R., Djaja I.M., (2008). Hubungan Lingkungan Rumah Dengan Kejadian Difteri Pada Kejadian Luar Biasa (KLB) Difteri Di Kabupaten Tasikmalaya Tahun 2005–2006 dan Di Kabupaten Garut Bulan Januari Tahun 2007. Volume 12 No 1, Juni 2008, hal 8–12 : Makara Kesehatan
  4. Lee, J. dan Wong, D. W. S, (2001). Statistical Analysis with Arcview GIS. New York : John Wiley and Sons
  5. Pracoyo, N.E., Roselinda, (2013). Survei Titer Anti Bodi Anak Sekolah Usia 6–17 Tahun di Daerah Klb Difteri Dan Non Klb Di Indonesia. Vol. 41, No. 4, 2013 p: 237–247 : Buletin Penelitian Kesehatan




Archive Article

Cover Media Content

Volume : 3 / No. : 2 / Pub. : 2014-12
  1. Determinan bayi dengan berat badan lahir rendah
  2. Faktor risiko kematian ibu dengan preeklampsia/eklampsia dan perdarahan di provinsi jawa timur
  3. Hubungan dukungan suami dengan tingkat kecemasan istri dalam menghadapi menopause
  4. Kondisi pembeda volume perdarahan kala iv
  5. Perbandingan tingkat konsistensi normalitas distribusi metode kolmogorov-smirnov, lilliefors, shapiro-wilk, dan skewness-kurtosis
  6. Pengaruh faktor reproduksi ibu dan anemia terhadap lama persalinan kala i fase aktif
  7. Perbandingan hasil peramalan dengan metode double exponential smoothing holt dan metode jaringan syaraf tiruan
  8. Analisis spasial faktor determinan incident rate difteri
  9. Pengaruh antenatal care terhadap kejadian berat bayi lahir rendah (bblr)
  10. Analisis hubungan kunjungan neonatal, asfiksia dan bblr dengan kematian neonatal
  11. Pengaruh karakteristik demografi, covert behavior dan akses pelayanan kesehatan ibu hamil terhadap kunjungan antenatal care