Table of Contents

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENGINEERING TECHNOLOGY FERMENTATION WASTE SEAWEED AS PROBIOTICS ON THE CULTIVATION OF INTENSIVE FISH AQUAPONIC SYSTEM</td>
<td>117 - 121</td>
</tr>
<tr>
<td>2</td>
<td>POTENTIAL USE OF RED ALGAE ETHANOL EXTRACT (Kappaphycus alvarezii) AS FORMALIN SUBSTITUTE NATURAL PRESERVATIVE IN MEAT FISH</td>
<td>123 - 127</td>
</tr>
<tr>
<td>3</td>
<td>POTENCY ANALYSIS OF Sonneratia sp. AT EAST COAST SURABAYA THROUGH ECOLOGY AND SOCIAL ECONOMY STUDIES</td>
<td>129 - 137</td>
</tr>
<tr>
<td>4</td>
<td>APPLICATION OF BLACK SOLDIER FLY LARVAL (Hermetia illucens) AS FEED AND ARTIFICIAL FEED (PELLETS) FOR RAINBOW KURUMOI FISH (Melanotaenia parva)</td>
<td>139 - 143</td>
</tr>
<tr>
<td>5</td>
<td>TECHNOLOGI ENGINEERING CHITOSAN AS A PRESERVATIVE AND ELEVATED LEVELS OF A PROTEIN ON TOFU</td>
<td>145 - 149</td>
</tr>
<tr>
<td>6</td>
<td>RAFFINOSE EXPLORATION COTTON SEEDS LIEU OF FORMALIN IN PRESERVING FISH</td>
<td>151 - 155</td>
</tr>
<tr>
<td>7</td>
<td>SUBSTITUTION EFFECT OF Artemia spp. WITH GOLDEN SNAIL (Pomacea canaliculata) AND WORM (Lumbricus rubellus) ON THE GROWTH AND PROTEIN RETENTION SNAKEHEAD SEED (Channa striata)</td>
<td>157 - 161</td>
</tr>
<tr>
<td>8</td>
<td>THE GRANTING OF AN ENZYME LIGNOCELLULOSA IN FEED ARTIFICIAL ON THE GROWTH AND THE SURVIVAL RATE SNAKEHEAD SEED (Osphronemus gouramy Lac.)</td>
<td>163 - 166</td>
</tr>
<tr>
<td>9</td>
<td>COMPARATIVE STUDY OF ABILITY Nannochloropsis sp. AND Spirulina sp. AS AGENT BIOREMEDIATION OF HEAVY METAL PLUMBUM (PB)</td>
<td>167 - 173</td>
</tr>
<tr>
<td>10</td>
<td>COMPARATIVE STUDY OF ABILITY Nannochloropsis sp. AND Chlorella sp. AS AGENT BIOREMEDIATION OF HEAVY METAL PLUMBUM (Pb)</td>
<td>175 - 180</td>
</tr>
<tr>
<td>11</td>
<td>STUDY OF BIOACCUMULATION HEAVY METAL MERCURY (Hg) ON LOCAL SEA CUCUMBER (Phyllophorus sp.) FROM SURABAYA EAST COAST â€“ EAST JAVA</td>
<td>181 - 186</td>
</tr>
<tr>
<td>12</td>
<td>EXPLORATION THE CANDIDATE PROBIOTIC BACTERIA IN MANGROVE MUD WONOREJO</td>
<td>187 - 192</td>
</tr>
<tr>
<td>13</td>
<td>STUDY OF HEAVY METAL LEAD (Pb) IN FISH, CRUSTACEANS AND MOLLUSKS AT THE NORTHERN COAST OF BANGKALAN, MADURA</td>
<td>193 - 199</td>
</tr>
<tr>
<td>14</td>
<td>MEASUREMENTS OF EXTRACT ETHER DIGESTIBILITY, ORGANIC MATTER AND ENERGY FEED IN TILAPIA (Oreochromis niloticus) USING SURGERY TECHNIQUES</td>
<td>201 - 204</td>
</tr>
<tr>
<td>15</td>
<td>SUBSTITUTION OF SOYBEAN MEAL WITH FERMENTED LAMTORO (Leucaena glauca) ON GROWTH AND FEED EFFICIENCY OF TILAPIA FISH (Oreochromis niloticus)</td>
<td>205 - 210</td>
</tr>
<tr>
<td>16</td>
<td>THE POTENTIAL ANTAGONISTIC BACTERIUM Lactobacillus plantarum AGAINST BACTERIAL PATHOGENS Aeromonas salmonicida BY IN VITRO</td>
<td>211 - 215</td>
</tr>
<tr>
<td>17</td>
<td>CORRELATION OF GROWTH AND CARRAGENAN CONTENT OF Kappaphycus alvarezii AND Eucheuma spinosum BY DIFFERENT DISTANCE PLACEMENT OF FLOATING RAFTS AT THE GRUJUGAN VILLAGE, SUB-DISTRICT GAPURA, RESIDENCE OF SUMENEP</td>
<td>217 - 222</td>
</tr>
</tbody>
</table>
APPLICATION OF BLACK SOLDIER FLY LARVAL (Hermetia illucens) AS FEED AND ARTIFICIAL FEED (PELLETS) FOR RAINBOW KURUMOI FISH (Melanotaenia parva)

APLIKASI LARVA BLACK SOLDIER FLY (Hermatia illucens) SEBAGAI PAKAN ALAMI DAN PAKAN BUATAN (PELET) UNTUK IKAN RAINBOW KURUMOI (Melanotaenia parva)

1. Muhammad Syahrizal Irfan --> Mahasiswa Fakultas Perairan dan Kelautan / X
2. Abdul Manan --> Dosen Fakultas Perairan dan Kelautan / X

Abstract

Fish flour is raw materials of main protein source for fish feed, however because of its existence day by day gets expensive so that the other alternative feed material needed as the alternate of fish flour that is maggot which is the larva of insects kind of fly which contains crude protein about 42%. This Study was held in Research and Aquaculture Cultivation Center of Ornamental Fish Depok, West Java in January 14th until February 14th 2013. The goal of this Study is to know the aplication of black soldier fly larval (Hermetia illucens) as the feed of rainbow kurumoi fish (Melanotaenia parva). Maggot culture was undertaken by mixing PKM and water with the comparison of 1:2 then fermented in fiber basin. Then interspersed with wire and above it there was a dry banana leaf to lay the eggs and covered by wire again, and then eggs harvesting was undertaken which was moved to the egg hatching basin which contain PKM which had been fermented. After 2 weeks maggot was ready to be harvested from the hatching basin. Maggot and maggot pellets could fulfill the need of nutrition for rainbow kurumoi fish, this case could be seen by the existence of weight increase and length increase of the fish.

Keyword : rainbow, kurumoi, fish, black, soldier, fly, larval, application, culture, maggot,

Daftar Pustaka :