Effect of sea coral implantation on chromosomes in rabbits.

Faculty of Dentistry Airlangga University
Indonesia

Accredited No. 34/DIKTI/Kep/2003

ISSN 0852-9027
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Effects of irrigation solutions and Calcium hydroxide dressing on root canal treatments of periapical lesions</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Lip and alar base dimensions among adolescence in healthy and post unilateral cleft lips correction in deutro-malaid population</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Study on the cytotoxicity and chromosome aberration following implantation of sea coral in rabbits</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Antimicrobial effects of Coleus amboinicus, Lour folium infusum towards Candida albicans and Streptococcus mutans</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Manufacturing hollow obturator with resilient denture liner on post hemimaxillectomy</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Poor oral hygiene as trigger of diabetes mellitus progressiveness</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Inhibition effect of calcium hydroxide point and chlorhexidine point on root canal bacteria of necrosis teeth</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Hybrid layer difference between sixth and seventh generation bonding agent</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Dental root periapical resorption caused by orthodontic treatment</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>The effect of caffeine on osteoblast proliferation after tooth extraction in Wistar rats</td>
<td>-</td>
</tr>
</tbody>
</table>
Poor oral hygiene as trigger of diabetes mellitus progressiveness

Abstract

Diabetes mellitus is a systemic disease with several major complications affecting both the quality and length of life. The disease is characterized by increasing susceptibility to infection that important risk factor for oral infection progressiveness; periodontitis, infection or lesions. Infection progressiveness and inflammation can increase blood cytokines. The cytokines modulate cells up and down regulation moreover apoptosis or necrosis cells. The increasing of the blood cytokines that implicate in the process of pancreatic ß-cell destruction is not fully understood. Poor oral hygiene stimulate proinflammatory cytokines (such as: IL-1, IL6, TNF-alpha, etc.) and make chronic infection worse. IL-1β and/or TNF-Î± plus IFN-Î¼ induce ß-cell apoptosis via the activation of ß-cell gene networks under transcription controlling factors, such as NF-ÎºB and STAT-1 (signal transducers and activators of transcription-1). Others mechanism of the decreased ß-cell function may activate cytokines stimulated macrophages. The presence of activated macrophages within pancreatic islets in insulin-dependent diabetes mellitus suggests an involvement of ÆY-cell death. This paper describes that poor oral hygiene are high predisposition on the diabetic progressiveness.

Keyword : diabetes, mellitus, cytokines, progressiveness,

Daftar Pustaka :
15. Pavlovic, (2001). Distinction between Interleukin-1α-induced necrosis and apoptosis of islet cells. - : Diabetes
25. **Bauditz, (1998)**. Increased secretion of pro-inflammatory cytokines by circulating polymorph nuclear neutrophils and regulation by interleukin 10 during intestinal inflammation. - : GUT

27. **Witt, (1998)**. Increased secretion of pro-inflammatory cytokines by circulating polymorph nuclear neutrophils and regulation by interleukin 10 during intestinal inflammation. - : GUT

28. **Lochs, (1998)**. Increased secretion of pro-inflammatory cytokines by circulating polymorph nuclear neutrophils and regulation by interleukin 10 during intestinal inflammation. - : GUT

29. **Schreiber, (1998)**. Increased secretion of pro-inflammatory cytokines by circulating polymorph nuclear neutrophils and regulation by interleukin 10 during intestinal inflammation. - : GUT

34. **Aframian, (2000)**. Oral manifestations of primary immunological diseases. - : American Dental Association

41. **Li, (2000)**. Systemic diseases caused by oral infection. - : Clinical Microbiology Reviews

42. **Kolltveit, (2000)**. Systemic diseases caused by oral infection. - : Clinical Microbiology Reviews

43. **Tronstad, (2000)**. Systemic diseases caused by oral infection. - : Clinical Microbiology Reviews

44. **Ingar Olsen, (2000)**. Systemic diseases caused by oral infection. - : Clinical Microbiology Reviews

52. **Hoeppelman, (1999)**. Immune dysfunction in patients with diabetes mellitus (DM). - : FEMS Immunology Medicine Microbiology

55. **Campisi, (2003)**. Circulating cytokines and endotoxin are not necessary for the activation of the sickness or corticosterone response produced by peripheral E. coli challenge. - : Journal Appl Physiology

56. **Hansen, (2003)**. Circulating cytokines and endotoxin are not necessary for the activation of the sickness or corticosterone response produced by peripheral E. coli challenge. - : Journal Appl Physiology

57. **O’C™Connor, (2003)**. Circulating cytokines and endotoxin are not necessary for the activation of the sickness or corticosterone response produced by peripheral E. coli challenge. - : Journal Appl Physiology

58. **Biedenkapp, (2003)**. Circulating cytokines and endotoxin are not necessary for the activation of the sickness or corticosterone response produced by peripheral E. coli challenge. - : Journal Appl Physiology

59. **Watkins, (2003)**. Circulating cytokines and endotoxin are not necessary for the activation of the sickness or corticosterone response produced by peripheral E. coli challenge. - : Journal Appl Physiology

60. **Maiers, (2003)**. Circulating cytokines and endotoxin are not necessary for the activation of the sickness or corticosterone response produced by peripheral E. coli challenge. - : Journal Appl Physiology
61. Fleschner, (2003). Circulating cytokines and endotoxin are not necessary for the activation of the sickness or corticosterone response produced by peripheral E. coli challenge. - : Journal Appl Physiology

82. Gunnett, (2002). Interleukin-10 protects Nitric Oxide-dependent relaxation during diabetes. Role of super oxide.. - : Diabetes

84. Faraci, (2002). Interleukin-10 protects Nitric Oxide-dependent relaxation during diabetes. Role of super oxide.. - : Diabetes

85. Liao, (2002). IL-19 induces production of IL-6 and TNF-Î¼ and results in cell apoptosis through TNF-Î¼1. - : The Journal of Immunology

86. Liang, (2002). IL-19 induces production of IL-6 and TNF-Î¼ and results in cell apoptosis through TNF-Î¼1. - : The Journal of Immunology

87. Chen, (2002). IL-19 induces production of IL-6 and TNF-Î¼ and results in cell apoptosis through TNF-Î¼1. - : The Journal of Immunology

88. Hsu, (2002). IL-19 induces production of IL-6 and TNF-Î¼ and results in cell apoptosis through TNF-Î¼1. - : The Journal of Immunology

89. Yang, (2002). IL-19 induces production of IL-6 and TNF-Î¼ and results in cell apoptosis through TNF-Î¼1. - : The Journal of Immunology

90. Chang, (2002). IL-19 induces production of IL-6 and TNF-Î¼ and results in cell apoptosis through TNF-Î¼1. - : The Journal of Immunology

91. Matsuki, (2002). IL-1 plays an important role in lipid metabolism by regulating insulin levels under physiological conditions. - : The Journal of Experimental Medicine

92. Horai, (2002). IL-1 plays an important role in lipid metabolism by regulating insulin levels under physiological conditions. - : The Journal of Experimental Medicine
93. Sudo, (2002). IL-1 plays an important role in lipid metabolism by regulating insulin levels under physiological conditions. - : The Journal of Experimental Medicine

94. Iwakura, (2002). IL-1 plays an important role in lipid metabolism by regulating insulin levels under physiological conditions. - : The Journal of Experimental Medicine

108. Casares, (2002). Down-regulation of diabetogenic CD4+ T cells by a soluble dimeric peptide â€“ MHC. - : -

110. McEvoy, (2002). Down-regulation of diabetogenic CD4 T cells by a soluble dimeric peptide â€“ MHC. - : -

111. Sarukhan, (2002). Down-regulation of diabetogenic CD4 T cells by a soluble dimeric peptide â€“ MHC. - : -

113. Brumeanu, (2002). Down-regulation of diabetogenic CD4 T cells by a soluble dimeric peptide â€“ MHC. - : -

120. Lou, (2005). Homeostatic role of interferons conferred by inhibition of IL-1-mediated inflammation and tissue destruction. - : The Journal of Immunology

133. Woo, (2005). Assay for high glucose-mediated islet cell sensitization to apoptosis induced by streptozotocin and cytokines. -: Biol Proced Online
134. Diosdado, (2005). Assay for high glucose-mediated islet cell sensitization to apoptosis induced by streptozotocin and cytokines. -: Biol Proced Online
137. Kikuta, (2004). The cytokine interleukin-1β Reduces the docking and fusion of insulin granules in pancreatic ï¿½-cells, preferentially decreasing the first phase of exocytosis. -: Journal Biology Chemistry
139. Nagamatsu, (2004). The cytokine interleukin-1β Reduces the docking and fusion of insulin granules in pancreatic ï¿½-cells, preferentially decreasing the first phase of exocytosis. -: Journal Biology Chemistry