Table of Contents

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Antiproliferation Effect of the n-Hexanal Extract of Kesum (Polygonum minus) at the Cells of the Rat Lung Cancer Effort Exploiting of Kesum as Drug of Lung Cancer</td>
<td>128 - 133</td>
</tr>
<tr>
<td>2</td>
<td>Antiproliferation Effect of the n-Hexanal Extract of Kesum (Polygonum minus) at the Cells of the Rat Lung Cancer Effort Exploiting of Kesum as Drug of Lung Cancer</td>
<td>128 - 133</td>
</tr>
<tr>
<td>3</td>
<td>Invitro Maturation of Domestic Cat (Felis catus Ovarian Oocytes fater being stored at 4o C</td>
<td>76 - 79</td>
</tr>
<tr>
<td>4</td>
<td>Concentrations of Liver and Plasma Malondealdehyde (MDA) of sprague Dawley Rats Injected by Ketamine-Xylazine HCL Anesthetics</td>
<td>80 - 83</td>
</tr>
<tr>
<td>5</td>
<td>Protein Profile of Sporozoite of Leucocytozoon sp. from Culicoides sp.</td>
<td>84 - 87</td>
</tr>
<tr>
<td>6</td>
<td>Expression of CD4+ T Cell, Interleukin-2 and Interleukin-4 on Splenectomy Balb/c Mice Post-Exposure Salmonella typhi</td>
<td>88 - 91</td>
</tr>
<tr>
<td>7</td>
<td>The Profile of Antioxidant Superoxide Dismutase (SOD) in Liver of Isoflavon, Zn, and Vitamins E-treated Rats</td>
<td>98 - 105</td>
</tr>
<tr>
<td>8</td>
<td>Species Identification of Coagulase Positive Staphylococci (CPS) by Multiplex Polymerase Chain Reaction (PCR)</td>
<td>106 - 111</td>
</tr>
<tr>
<td>9</td>
<td>Species Identification of coagulase positive staphylococci (CPS) by multiplex Polymerase Chain Reaction (PCR)</td>
<td>108 - 111</td>
</tr>
<tr>
<td>10</td>
<td>Mechanisms Underlying Abortion in Dexamethatione Treatment at Ewe in Midgestation</td>
<td>112 - 117</td>
</tr>
<tr>
<td>11</td>
<td>Antibody Against Prolactin: as a Teraphy for Molting Duck</td>
<td>118 - 123</td>
</tr>
<tr>
<td>12</td>
<td>Optimization of Temperature and Cellulase pH from Rumen Bacteria Isolation of Beef Cattle</td>
<td>124 - 127</td>
</tr>
<tr>
<td>13</td>
<td>Antiproliferation Effect of the n-Heksana Extract of Kesum (Polygomon minus) at the Cells of the Rat Lung Cancer: Effort Explotting of Kesum as drug of Lung Cancer</td>
<td>128 - 133</td>
</tr>
<tr>
<td>14</td>
<td>Effect of Supplementation of Ccows or Directly to Calves on Calf Performence in Bali Cattle Grazing Communal Pastures</td>
<td>134 - 138</td>
</tr>
</tbody>
</table>
Optimization of Temperature and Cellulase pH from Rumen Bacteria Isolation of Beef Cattle

Optimization of Temperature and Cellulase pH from Rumen Bacteria Isolation of Beef Cattle

1. Mirni Lamid --> Dosen Fakultas Kedokteran Hewan / mirnilamid@yahoo.com
2. Ni Nyoman Tri Puspaningsih --> Dosen Fakultas Sains dan Teknologi
3. Widya Paramita --> Dosen Fakultas Kedokteran Hewan

Abstract

Biotechnology in animal feed using biological treatment such as cellulase is mainly aimed to increase degrade the cellulose; the second most abundant polysaccharide in nature. Information of using cellulase as biocatalyst for increasing animal feed quality as ruminants feed is limited. Cellulose is the major component of cell wall agroindustry waste after hemicellulose. This cellulase comes from Actinobacillus sp. that were isolated from rumen fluid of beef cattle. The aim of this research was to determine activity of cellulase and characterization of optimum temperature and pH. In this research identification with carboxyl methylcellulose (CMC) has been done. Methods for cellulase activity was 3,5-dinitrosalicylic acid (DNS). The results showed that Actinobacillus which have positive activity of cellulase. Characterization of Actinobacillus sp. had optimum temperature 45°C with activity 1.42 U/ml and optimum pH 6 with activity 0.57 U/ml.

Keyword : cellulase, carboxyl, methyl, cellulose, temperature, beef, cattle,

Daftar Pustaka :