Efek Waktu Sentrifugasi Terhadap Motilitas, Daya Tahan Hidup dan Tudung Akrosom Spermatozoa Kambing

The Effect of Centrifugation on Quality of Motility, Viability and Acrosom Cap of Goat Sperm

Suherni Susilowati

Fakultas Kedokteran Hewan Unair

Kampus C Unair, Jl. Mulyorejo, Surabaya-60115. Telp. 031.5992785, Fax. 031.5993015 E-mail: scorpios_girl88@yahoo.co.id

Abstract

Semen is the liquid or semi gelatinous cellular suspension containing the male gametes or spermatozoa and secretions from accessory organs of the male reproductive tract. Centrifugation of semen is one of the method for in vitro manipulation of sperm. The aim of centrifugation of semen is to separate motile sperm and immotile sperm and to separate seminal plasm from semen that is able to influence quality of sperm. The negative impact of separation of semen by using centrifugation is the production of Reactive Oxygen Species (ROS). ROS has negative effect to sperm metabolism followed by loosing of energy. The result of this experiment indicated that percentages of intac acrosom cap were significantly (p < 0.05). The conclusion of this experiment was centrifugation of semen able to cause decreasing percentage of motility, viability and intact acrosom cap on sperm.

Keywords: sperm, motility, viability, acrosom cap and centrifugation

Pendahuluan

Manipulasi spermatozoa secara in vitro telah dimulai sejak awal abad ke 20, diantaranya adalah dengan metode sentrifugasi. Sentrifugasi semen diperlukan terutama untuk proses teknologi Bantu reproduksi yang bertujuan untuk membantu proses reproduksi dengan cara mempertemukan spermatozoa kualitas tinggi dengan sel telur sehingga terjadi fertilisasi. Sentrifugasi semen bertujuan pula untuk memisahkan spermatozoa yang motil dan yang tidak motil serta memisahkan komponen plasma seminalis yang mempengaruhi kualitas spermatozoa (Hardjopranjoto, 2006). Manipulasi spermatozoa ditujukan kepada keberhasilan proses fertilisasi in vitro. Keberhasilan fertilissai in vitro dibutuhkan adanya ovum yang matang dan spermatozoa yang telah mengalami kapasitasi (Hardjopranjoto, 1985).

Hasil penelitian Fitri (2002), membuktikan bahwa keutuhan membrane plasma spermatozoa sapi setelah sentrifugasi dengan kecepatan 1000 G selama 10 menit adalah 22,2%. Brandies and Manuel (1993) menemukan adanya penurunan persentase membrane plasma utuh spermatozoa manusia yang bermakna setelah perlakuan pemisahan spermatozoa dengan sentrifugasi gradient densitas percoll diskontineus pada kecepatan 2000 rpm selama 20 menit. Susilawati (2000), juga membuktikan adanya kerusakan struktur membran spermatozoa yang diikuti dengan penurunan motilitas dan viabilitas spermatozoa setelah pemisahan dengan sentrifugasi gradient densitas percoll 10 tingkat pada kecepatan 2250 rpm selama 5 menit. Akibat kerusakan struktur membrane maka sejumlah fungsi membrane menjadi terganggu. Dampak buruk yang

lain adalah pemisahan plasma seminalis dengan teknik sentrifugasi adalah adanya peningkatan pembentukan Reactive Oxygen Species (ROS) oleh spermatozoa. Agaerwal, et al (2003) menemukan peningkatan akumulasi produksi ROS pada spermatozoa manusia yang disentrifugasi dengan beberapa kali putaran. Meningkatnya produksi ROS oleh spermatozoa setelah pemisahan oleh sentrifugasi diduga merupakan proses yang komplek dan dapat berasal dari berbagai proses kimia, organel maupun sel bahkan berasal dari luar sel. Berbagai proses biologis yang dapat menjadi modulator pembentukan ROS oleh spermatozoa diantaranya kerusakan mekanik pada membrane spermatozoa dan terpisahnya plasma seminalis dari spermatozoa (Aitken and Clarkson, 1990; Iwazaki and Gagnon, 1992). Reactive Oxygen Species (ROS) mempunyai daya merusak metabolisme spermatozoa sehingga spermatozoa kehilangan motilitas dan fungsinya.

Tujuan dari penelitian ini adalah untuk mengetahui pengaruh sentrifugasi terhadap kualitas spermatozoa kambing. Oleh karena itu peneliti ingin meneliti efek sentrifugasi terhadap motiulity, viability and tudung akrosom spermatozoa.kambing.

Materi dan Metode Penelitian

Penampungan Semen

Semen ditampung dari kambing jantan dengan menggunakan vagina buatan yang dilengkapi dengan tabung gelas penampung berskala. Vagina buatan disiapkan dengan memasang kedua selubung dan alat penampung yang telah disterilkan, sedangkan ruangan antara selubung luar dan dalam diisi dengan air

hangat yang bersuhu 45°C dengan tujuan memberi suhu terhadap selubung dalam sebesar 42-43°C dan sepertiga bagian depan selubung dalam vagina buatan diolesi vaselin. Setelah vagina buatan selesai dipersiapkan, pejantan diberi rangsangan dengan betina pemancing kemudian dilakukan penampungan semen. Segera setelah penampungan , semen dibawa kelaboratorium untuk diperiksa.

Pemeriksaan Kualitas Semen Segar dan Pemeriksaan Setelah Sentrifugasi

Pemeriksaan semen segar dilakukan sesegera mungkin setelah penampungan. Kemudian dilakukan pemeriksaan yang terdiri dari pemeriksaan makroskopis dan mikroskopis. Pemeriksaan makroskopis meliputi pemeriksaan volume, warna, pH, baud an konsistensi. Pemeriksaan mikroskopis meliputi konsentrasi spermatozoa, persentase motilitas spermatozoa, persentase spermatozoa hidup dan tudung akrosom utuh.

Perlakuan Sentrifugasi Semen

Semen dimasukkan dalam tabung, masingmasing tabung berisi 0,5 ml semen. Tabung I sebagai control tidak ditambah medium sentrifugasi (medium Bracket and Oliphan) dan tidak disentrifus dibiarkan selama 5 menit. Tabung II sebagai perlakuan ditambah medium sentrifugasi (medium Bracket and Oliphant) kemudian disentrifus dengan kecepatan 1800 rpm selama 5 menit. Selanjutnya diperiksa tudung akromnya. Tabung III sebagai perlakuan ditambah dengan medium sentrifugasi (medium Bracket and Oliphant) kemudian disentrifus dengan kecepatan 1800 rpm selama 10 menit. Selanjutnya diperiksa tudung akrosomnya.

Pemeriksaan Mikroskopis Spermatozoa Pemeiksaan motilitas spermatozoa

Sebanyak $10~\mu l$ supensi semen diteteskan pada gelas objek yang terdapat lekukan ditengahnya kemudian ditutup dengan gelas penutup dan diamati berapa banyak spermatozoa yang bergerak progresif (maju ke depan) dengan menggunakan mikroskop dengan pembesaran 400 kali. Motilitas spermatozoa ditentukan dengan menghitung pergerakan spermatozoa motil (bergerak maju) dan tidak motil sampai sebanyak 100 spermatozoa. Motilitas spermatozoa dibagi menjadi 4 kriteria yaitu bergerak maju kedepan , bergerak mundur, bergerak berputar atau ditempat dan tidak bergerak.

Konsentrasi spermatozoa

Penentuan kosentrasi spermatozoa diukur dengan menggunakan haemocytometer Thoma dengan cara kerja sebagai berikut: pipet eritrosit diisi dengan cairan semen sampai tanda 0,5 , NaCl 3% yang ditambah eosin dihisap sampai tanda 101 pada pipet. Kemudian dikocok sampai homogen dan beberapa tetes dibuang. Satu tetes ditempatkan pada cover glass thoma, dihitung jumlah spermatozoa dalam 4 kotak besar yang membentuk diagonal dan satu kotak yang lain

Daya tahan hidup spermatozoa

Semen segar diteteskan pada gelas obyek ditambahkan eosin negrosin dicampur sampai homogen dan kemudian dibuat preparat ulas, dikeringkan diatas nyala api dengan cepat. Hasil ulasan diamati dengan mikroskop fase kontras pembesaran 400 kali. Spermatozoa yang hidup tidak akan menyerap warna sehingga nampak jernih.

Pemeriksaan tudung akrosom spermatozoa

Sebanyak 0,9 gram NaCl dilarutkan dengan aquabidestilata sampai 100 ml. Kemudian 1 ml formalin ditambahkan kedalam 99 ml larutan Na Cl fisiologis dan dikocok sampai homogen. Satu bagian semen dicampurkan dengan tiga bagian campuran larutan Na Cl fisiologis dan formalin dan didiamkan sekitar 3 menit. Selanjutnya dibuat preparat ulas pada obyek glas dan ditutup cover glas. Spermatozoa diperiksa dibawah mikroskop fase kontras dengan pembesaran 400 kali. Penilaian dilakukan dengan menghitung proporsi spermatozoa dengan tudung akrosom utuh dalam 100 spermatozoa. Spermatozoa yang memiliki tudung akrosom utuh ditandai dengan adanya tudung akrosom yang berwarna hitam.

Hasil dan Pembahasan

Kualitas dan kuantitas semen sebelum sentrifugasi

Semen segar yang digunakan untuk penelitian ini harus memenuhi criteria sebagai berikut. Semen kambing ditampung dari pejantan kambing yang berumur kurang lebih 3 tahun yang mempunyai libido tinggi, kemudian dilakukan pemeriksaan secara makroskopis dan mikroskopis. Hasil penampungan yang layak digunakan untuk penelitian adalah sebagai berikut: warna putih kekuningan, pH 7, motilitas

individu 70%. Adapun hasil pemeriksaan semen segar yang digunakan untuk penelitian dapat dilihat pada table 1 sedangkan hasil pemeriksaan semen setelah sentrifugasi dapat dilihat pada table 2.

Tabel 1. Hasil pemeriksaan semen segar setelah penampungan

Parameter	Karakter		
Warna	Putih kekuningan		
Bau	Khas		
Konsistensi	Kental		
рН	7.00		
Volume (ml)	1,3		
Konsentrasi (juta)	3800×10^6		
Motilitas Individu (%)	Progresif (88±5,34)		
Hidup (%)	90±6,35		
Tudung akrosom utuh (%)	$85\pm 5,24$		

Hasil penelitian menunjukkan bahwa semen yang ditampung dari 5 ekor kambing berwarna putih kekuningan, bau khas, konsistensi kental, pH \pm 7.00, volume rata-rata 1,3 ml, konsentrasi 3800 x 106 , motilitas individu bergerak progresif 88 \pm 5,34 %, hidup 90 \pm 6,53% dan tudung akrosom utuh 85 \pm 5,24%. Dari hasil penelitian diatas dapat disimpulkan bahwa kualitas semen tersebut memenuhi persyaratan untuk digunakan penelitian lebih lanjut.

Tabel 2. Hasil pemeriksaan semen setelah sentrifug

Parameter (n=6)	Kontrol	Perlakuan I	Perlakuan II
	Rerata ± SD (%)	Rerata ± SD (%)	Rerata ± SD (%)
Motilitas (%)	$85 \pm 4,56$	$70 \pm 5,05$	$65 \pm 4,54$
Hidup (%)	$87 \pm 5,67$	$75 \pm 4,05$	$69 \pm 5,05$
Tudung akrosom utuh (%0	$84 \pm 4,50$	64 ± 5.56	$59 \pm 4,25$

Keterangan:

Kelompok Kontrol: kelompok tanpa sentrifugasi

Perlakuan I: kelompok perlakuan dengan waktu sentrifugasi 5 menit Perlakuan II: kelompok perlakuan dengan waktu sentrifugasi 10 menit

Sentrifugasi semen diperlukan terutama untuk proses Teknologi Bantu Reproduksi yang bertujuan membantu proses reproduksi dengan cara mempertemukan spermatozoa kualitas tinggi dengan sel telur sehingga terjadi fertilisasi (Hardjopranjoto, 2006). Manipulasi spermatozoa ditujukan untuk keberhasilan proses fertilisasi in vitro (Hardjopranjoto, 1987)

Hasil penelitian ini menunjukkan adanya penurunan kualitas spermatozoa setelah dilakukan sentrifugasi dengan kecepatan 1800 rpm selama 5 menit maupun selama 10 menit (dengan indikator persentase motilitas, daya tahan hidup, dan tudung akrosom utuh), dapat dilihat pada Tabel 2. Dengan uji Anava menunjukkan perbedaan yang nyata antara kelompok kontrol dan perlakuan (p< 0,05). Hasil penelitian ini sejalan dengan hasil penelitian Fitri (2000) bahwa spermatozoa setelah dilakukan sentrifugasi dengan kecepatan 1000 G selama 10 menit menunjukkan adanya kerusakan membran plasma dan tudung akrosom spermatozoa sapi Madura. Demikian juga hasil penelitian Susilawati (2000) yang membuktikan adanya penurunan motilitas spermatozoa sapi yang sangat bermakna setelah pemisahan dengan sentrifugasi gradien densitas percoll 10 tingkat dengan kecepatan 2250 rpm selama 5 menit. Hasil penelitian ini juga ditunjang oleh penelitian Trilas (2003), yang membuktikan bahwa kecepatan dan lama sentrifugasi mempengaruhi membran plasma utuh spermatozoa sapi. Menurunnya kualitas spermatozoa tersebut dikarenakan spermatozoa telah mengalami serangkaian perlakuan mulai dari proses penampungan hingga proses pemisahan yang membutuhkan banyak energi untuk tetap menormalkan kondisi fisiologisnya. Menurut Dasrul (2005) menurunnya kualitas spermatozoa tersebut akibat pengaruh bahan kimiawi dalam medium dan pengaruh mekanik seperti gesekan permukaan membran dengan partikel medium atau dinding tabung. Sentrifugasi menyebabkan deformasi matriks ekstraseluler spermatozoa termasuk perubahan komposisi lipid membran dimana lipid tersebut penting dalam mempertahankan fluiditas membrane spermatozoa (Guzman et al, 2001). Sentrifugasi menyebabkan membrane rusak sehingga lalu lintas ion-ion terganggu. Kolesterol dan fosfolipid merupakan komponen lipid membrane yang sangat penting dalam mempertahankan integritas membrane.

Banyak bukti menunjukkan bahwa kandungan kolesterol membrane spermatozoa berkorelasi positif dengan keutuhan membrane plasma.

Membran plasma merupakan pintu keluar zat-zat dari dalam ke luar sel atau masuknya sebaliknya. Keutuhan integritas membrane spermatozoa trmasuk membrane plasma mutlak diperlukan, untuk menjamin kelangsungan hidup dan keberhasilannya membuahi sel telur. Hal ini disebabkan karena selain berfungsi melindungi organel-organel sel dari kerusakan mekanik, membrane plasma juga berperan penting sebagai filter yang baik bagi pertukaran zat-zat intra dan ekstraseluler yang diperlukn dalam proses metabolisme (Garner dan Hafez, 2000). Tudung akrosom merupakan salah satu bagian kepala spermatozoa yang juga harus terjaga keutuhannya sampai terjadi kapasitasi. Tudung akrosom berperan penting dalam proses fertilisasi, keutuhannya harus tetap terjaga sehingga proses fertilisasi dapat berjalan dengan baik. Akibat kerusakan struktur membrane maka sejumlah fungsi membrane terganggu, sehingga terjadi peningkatan influk Ca²⁺ ke dalam sel secara abnormal yang mengakibatkan konsentrasi Ca²⁺ di dalam sel meningkat (Halliwell and Gutteridge, 1999).

Kesimpulan

Dari penelitian ini dapat disimpulkan bahwa pengaruh lama sentrifugasi menyebabkan penurunan persentase kualitas spermatozoa.kambing.

Daftar Pustaka

Agaerwal, A., R. A Saleh and M. A Bedalwy, 2003. Role of Reactive Oxygen Species in the Pathophysiology of Human Reproductive. Fertility and Sterility. 79:829-849.

Aitken, R.J., J.S Clarkson and Fishert, 1994. Generation of Reactive Oxygen Species, Lipid Peroxydation and Human Sperm Function. Biology Reprod. 40:183-197.

Brandeis, V.T and M.T Manuel, 1993. Effect of four methods of sperm preparation on the motile concentration, morphology and acrosom status of recovered sperm from normal semen samples. J.Assists. Reprod. Genet. Aug: 10(6):409-416.

- Dasrul, 2005. Peran Senyawa Oksigen Reaktif Dalam Mekanisme Kerusakan Integritas Membran Spermatozoa Kerbau Lumpur Hasil Sentrifugasi Gradien Densitas percoll. Disertasi. Program Pascasarjana. Universitas Airlangga.
- Fitri, T.A, 2002. Pengaruh Kecepatan dan Sentrifugasi Terhadap Keutuhan Membran Plasma dan Tudung Akrosom Spermatozoa Sapi Madura. Skripsi. Fakultas Kedokteran Hewan Universitas Airlangga Surabaya.
- Garner and Hafez, E.S.E, 2000. Reproduction in Farm Animal. 7th Edition. Philadelphia. Baltimore. New York London.
- Guzman, E.G., M.Ollero., M.C Lopez., R.K Sharma., J.G Alvarez., A.J Thomas and A. Agarwal, 2001. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum. Reprod. Vol. 16.9: 1922-1930.

- Halliwell, B and J.M.C Gutteridge, 1999. Free Radicals in Biology and Medicine. Third Edition. Oxford : Oxford University Press: pp: 1-35, 246-350, 664-667.
- Hardjopranjoto, S, 1987. Pembuahan In Vitro and Transfer Embrio. Pidato Pengukuhan Guru Besar Fakultas Kedokteran Hewan Universitas Airlangga. Surabaya.
- Hardjopranjoto, S, 2006. Perkembangan Bioteknologi Reproduksi pada Ternak. Pidato Ilmiah. Pada Acara Temu Ilmiah Sehari Dalam Rangka Purnabakti Prof.Dr Soehartotojo Hardjopranjoto MSc, Drh . Dari Fakultas Kedokteran Hewan Universitas Airlangga.
- Iwazaki, A and C. Gagnon, 1992. Formation of Reactive Oxygen Species in Spermatozoa of Infertile patient. Fertl. Steril. 57:408-416.
- Susilawati, T, 2000. Analisis Membran Spermatozoa Sapi Hasil Filtrasi Sephadeks dan Sentrifugsi Gradien Densitas Percoll pada Proses Seleksi Jenis Kelamin. Disertasi Pascasarjana Universitas Airlangga.