SUHU PENYIMPANAN KREATININ DAN ASAM URAT DALAM AIR KEMIH SELAMA 24 JAM
(Storage Temperature for 24 Hours of Uric Acid in Urine)

AAN. Subawa, Sinmy Herawati, I Nyoman Wande, I Wayan Putu Sutirta Yasa, Tjakorda Gede Osa

ABSTRAK
Creatinine and uric acid is a product that excreted in the urine by normal kidney functions. The examination of creatinine and uric acid in urine is done on 24-hour urine collection. During the storage of the urine, it is recommended to be stored in a refrigerator with the grade temperatures ranging from 2–8°C and is not recommended to use any preservative for the examination of creatinine and uric acid in urine. To know the comparison of creatinine and uric acid concentrations in urine between the urine tested immediately after the collection with urine that was stored at a temperature 2–8°C and those at room temperature for 24 hours. A total of 45 urine samples from outpatient clinic that came to the laboratory, were collected in particular urine vacutainer. Each urine sample is divided into three tubes. The first tube (P1) examined concentrations of creatinine and uric acid immediately after collection, was considered as the baseline value. The second tube (P2) stored at 2–8°C and the third tube (P3) is stored at room temperature for 24 hours, then followed by the examination of creatinine and uric acid concentrations. The examination of creatinine in urine was using reagent CREP2 Roche Diagnostic and uric acid in urine was using reagent UA2 Roche diagnostics by Cobas Integra 400 plus & instrument. The mean of creatinine in urine concentrations which immediately examined (P1) is (125.10±74.85 mg/dL) and concentrations after storage at 2–8°C (P2) and at room temperature (P3) were (123.45±78.80 mg/dL) and (124.09±73.95 mg/dL) respectively. Based on the analysis of one-way ANOVA, there were no significant differences between the concentrations of creatinine in urine immediately checked which were stored at 2–8°C and at room temperature (P>0.05). The mean of uric acid in urine concentrations which immediately examined (P1) is (52.61±35.48 mg/dL), where as after storage at 2–8°C (P2) and room temperature (P3) were (49.11±31.62 mg/dL) and (46.36±38.91 mg/dL) respectively. Based on the analysis of one-way ANOVA, there were no significant differences between the concentrations of uric acid in urine immediately checked by those stored at 2–8°C and at room temperature (P>0.05). Based on this study, it can be concluded that there were no effect of storage temperature on the concentrations of creatinine and uric acid in urine within 24 hours.

Kata kunci: Creatinine urine, uric acid, storage temperature, 24 hours

ABSTRACT
Creatinine and uric acid are products excreted in urine by normal kidney functions. The examination of creatinine and uric acid in urine is done on 24-hour urine collection. During the storage of the urine, it is recommended to be stored in a refrigerator with grade temperatures ranging from 2–8°C and is not recommended to use any preservative for the examination of creatinine and uric acid in urine. To know the comparison of creatinine and uric acid concentrations in urine between the urine tested immediately after the collection with urine that was stored at a temperature 2–8°C and those at room temperature for 24 hours. A total of 45 urine samples from outpatient clinic that came to the laboratory were collected in particular urine vacutainer. Each urine sample is divided into three tubes. The first tube (P1) examined concentrations of creatinine and uric acid immediately after collection, was considered as the baseline value. The second tube (P2) stored at 2–8°C and the third tube (P3) is stored at room temperature for 24 hours, then followed by the examination of creatinine and uric acid concentrations. The examination of creatinine in urine was using reagent CREP2 Roche Diagnostic and uric acid in urine was using reagent UA2 Roche diagnostics by Cobas Integra 400 plus & instrument. The mean of creatinine in urine concentrations which immediately examined (P1) is (125.10±74.85 mg/dL) and concentrations after storage at 2–8°C (P2) and at room temperature (P3) were (123.45±78.80 mg/dL) and (124.09±73.95 mg/dL) respectively. Based on the analysis of one-way ANOVA, there were no significant differences between the concentrations of creatinine in urine immediately checked which were stored at 2–8°C and at room temperature (P>0.05). The mean of uric acid in urine concentrations which immediately examined (P1) is (52.61±35.48 mg/dL), where as after storage at 2–8°C (P2) and room temperature (P3) were (49.11±31.62 mg/dL) and (46.36±38.91 mg/dL) respectively. Based on the analysis of one-way ANOVA, there were no significant differences between the concentrations of uric acid in urine immediately checked by those stored at 2–8°C and at room temperature (P>0.05). Based on this study, it can be concluded that there were no effect of storage temperature on the concentrations of creatinine and uric acid in urine within 24 hours.

Key words: Creatinine urine, uric acid urine, storage temperature, 24 hours

Bagian Patologi Klinik FK Universitas Udayana/RSUP Sanglah Denpasar. E-mail: drsubawa@yahoo.com
PENDAHULUAN

Kreatinin dan asam urat merupakan hasilan terpenting yang diekskresikan dalam air kemih yang diperankan oleh fungsi ginjal yang normal. Gangguan fungsi ginjal akan mempengaruhi ekskresi bahan tersebut, sehingga akan menumpuk dalam darah.\(^1\)

Beberapa kondisi seperti penyakit ginjal akut maupun kronis, diabetes melitus, hipotiroidisme dapat mempengaruhi ekskresi kreatinin dalam air kemih. Penyakit gout, batu saluran kencing sering ditemukan kondisi ketidakwajaran ekskresi asam urat dalam air kemih.\(^2\)

Populasi yang digunakan yaitu mereka yang datang ke Laboratorium Patologi Klinik RS Sanglah Denpasar untuk memeriksaan air kemih secara teratur. Sampel penelitian yang digunakan yaitu pasien yang datang ke laboratorium untuk pemeriksaan air kemih secara teratur dalam kurun waktu tiga bulan. Sampel yang diambil di puncak pasien yang beriwayat penyakit ginjal, Infeksi Saluran Kemih (ISK) atau penyakit yang berubah-ubah dengan hiperurikosuria.

Pemeriksaan kadar kreatinin dalam air kemih menggunakan reagen CREP 2 Roche Diagnostic, sedangkan kadar asam urat dalamnya menggunakan bahan dari UA 2 Roche Diagnostic. Kedua pemeriksaan tersebut menggunakan alat Cobas Integra 400 plus. Penelitian dilaksanakan di laboratorium Patologi Klinik FK Universitas Udayana/RSUP Sanglah Denpasar selama tiga (3) bulan.

Data yang diperoleh disajikan dalam bentuk rerata dan simpang baku, kemudian dianalis dengan Kolmogorov-Smirnov, Levene statistic dan One-Way ANOVA menggunakan SPSS versi 14.

METODE

Penelitian ini merupakan kajian terkait percobaan laboratoris dengan rancangan bangun analisis potong silang dengan cara membandingkan kepekaan kreatinin dan asam urat dalam air kemih curahan yang pertama diperiksa setelah ditampung. Kreatinin dan asam urat dalam air kemih yang diperiksa tersebut setelah disimpan pada suhu kamar dan yang antara 2–8°C selama 24 jam. Air kemih yang digunakan di sinis, yaitu yang ditampung sewaktu dan dilakukan dalam beberapa bentuk aliquot yang kelak disimpan selama 24 jam pada suhu yang berbeda.

Populasi yang digunakan yaitu mereka yang datang ke Laboratorium Patologi Klinik RS Sanglah Denpasar untuk memeriksaan air kemih secara teratur. Sampel penelitian yang digunakan yaitu pasien yang datang ke laboratorium untuk pemeriksaan air kemih secara teratur dalam kurun waktu tiga bulan. Sampel yang dipilih disampaikan pasien yang beriwayat penyakit ginjal, Infeksi Saluran Kemih (ISK) atau penyakit yang berubah-ubah dengan hiperurikosuria.

Pemeriksaan kadar kreatinin dalam air kemih menggunakan reagen CREP 2 Roche Diagnostic, sedangkan kadar asam urat dalamnya menggunakan bahan dari UA 2 Roche Diagnostic. Kedua pemeriksaan tersebut menggunakan alat Cobas Integra 400 plus. Penelitian dilaksanakan di laboratorium Patologi Klinik FK Universitas Udayana/RSUP Sanglah Denpasar selama tiga (3) bulan.

Data yang diperoleh disajikan dalam bentuk rerata dan simpang baku, kemudian dianalis dengan Kolmogorov-Smirnov, Levene statistic dan One-Way ANOVA menggunakan SPSS versi 14.

HASIL DAN PEMBAHASAN

Selama tiga bulan penelitian, tercatat 45 sampel air kemih yang memenuhi syarat sebagai sampel. Setiap sampel dipisahkan ke dalam tiga tabung aliquot yang berisi 2 mL air kemih. Tabung pertama (P1) segera setelah air kemih ditampung yang diperiksa adalah kadar kreatinin dan asam urat. Tabung kedua (P2) disimpan pada suhu 2–8°C selama 24 jam dan kemudian yang diperiksa adalah kadar kreatinin dan asam urat. Tabung ketiga (P3) disimpan pada suhu kamar selama 24 jam dan kemudian yang diperiksa adalah kadar kreatinin dan asam urat dalam air kemih. Hasil memperlihatkan kadar kreatinin dan asam urat dalam air kemih dapat dilihat dalam Tabel 1.

Berdasarkan uji normalitas dengan Kolmogorov- Smirnov menunjukkan data bersaebaran normal (P>0,05) dan uji homogenitas dengan Levene statistic menunjukkan data setiap kelompok homogen (P >
Tabel 1. Kadar kreatinin dan asam urat air kemih di berbagai suhu penyimpanan

<table>
<thead>
<tr>
<th>Kadar</th>
<th>Kreatinin air kemih</th>
<th>Asam urat air kemih</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ravena (mg/dL)</td>
<td>SBU</td>
</tr>
<tr>
<td>Segera diperiksa (P1)</td>
<td>125,10</td>
<td>74,48</td>
</tr>
<tr>
<td>Disimpan 24 jam pada suhu antara 2–8°C (P2)</td>
<td>123,42</td>
<td>73,80</td>
</tr>
<tr>
<td>Disimpan 24 jam pada suhu kamar (P3)</td>
<td>124,09</td>
<td>73,95</td>
</tr>
</tbody>
</table>

0,05). Berdasarkan analisis statistik dengan One Way ANOVA kadar kreatinin air kemih menunjukkan tidak ada perbedaan yang bermakna antara yang segera diperiksa dan yang disimpan pada suhu 2–8°C dan yang kamar (P>0,05). Hal yang serupa juga diperoleh pada pemeriksaan kadar asam urat dalam air kemih, menunjukkan tidak ada perbedaan yang bermakna kadar asam urat di dalamnya antara yang segera diperiksa dan yang disimpan pada suhu 2–8°C serta yang pada suhu kamar (P>0,05). Hasil uji Post Hoc Test dengan melihat nilai LSD kadar kreatinin air kemih dan asam uratnya, menunjukkan tidak ada perbedaan antara setiap perlakuan (P>0,05). Mean plot setiap pemeriksaan dapat dilihat di Gambar 1a dan 1b.

Pemeriksaan kadar kreatinin dalam air kemih penting dalam beberapa kondisi. Namun, akan lebih penting jika diperiksa kadar kreatinin dalam air kemih bersama-sama dengan beberapa analit lain yang terdapat di dalamnya. Pemeriksaan kadar kreatinin air kemih dilakukan dengan penampangannya dalam kurun waktu 24 jam. Hal ini disampaikan bahwa kreatinin yang disekresikan lewat air kemih secara umum tetap. Kajian yang dilakukan oleh Spierto dkk. di spesimen air kemih dari 10 orang dewasa sehat, spesimen air kemih disimpan selama 30 hari pada berbagai suhu. Di hasil meneliti didapatkan bahwa hanya terdapat pada penyimpanan spesimen air kemih yang lama dan suhu peringkat hari biasa (30 hari, suhu 55°C) menyebabkan penurunan kadar kreatinin air kemih secara bermakna. Ketika disimpan selama dua (2) hari pada suhu 55°C terjadi penurunan kadar kreatinin air kemih sebesar 3%. Dapat disimpulkan dalam hal ini, bahwa pada kondisi yang tidak luar biasa, lamanya waktu dan suhu penyimpanan tidak berpengaruh pada perubahan kadar kreatinin dalam air kemih.7

Kajian yang dilakukan oleh Miki dan Sudo8 disebutkan bahwa kadar kortisol bebas dan kreatinin dalam air kemih tidak berubah secara bermakna (P>0,1) jika bahan induk disimpan pada suhu 4°C selama satu (1) minggu di berbagai nilai pH. kecepatan yang terkait air kemih 10. Dalam kajian ini disarankan bahwa untuk analisis katekolamin, kortisol dan kreatinin dalam sampel air kemih, baik yang diaetritan atau tidak, harus segera dibekukan jika terjadi penundaan analisis yang cukup lama. Jika pH air kemih adalah antara tiga (3) dan tujuh (7), penyimpanan pada suhu 4°C selama 1–2 hari setelah pengumpulan air kemih masih diperbolehkan sebelum dibekukan.8

Di kajian yang dilakukan di sini, didapatkan bahwa kadar kreatinin air kemih pada berbagai suhu penyimpanan (2–8°C dan suhu kamar) selama 24 jam, tidak ada perbedaan yang bermakna dengan kadar kreatinin dalam air kemih yang segera diperiksa setelah ditumpahkan (P>0,05). Berdasarkan analisis dengan LSD menunjukkan tidak ada perbedaan kadar asam urat yang bermakna antara ketiga kelompok spesimen percobaan.

Dalam beberapa penelitian dikemukakan bahwa kadar kreatinin dalam air kemih stabil selama empat (4) hari jika disimpan pada suhu ruangan dan stabil selama tujuh (7) hari jika disimpan pada suhu kamar pendengin (2–8°C). Jika disimpan beku dapat stabil sampai dua (2) bulan. Sampel yang disimpan beku sebelum dianalisis terlebih dahulu perlu di thawing dan dihomogenisasi.9,10

Kadar zat yang terlarut, pH, waktu penyimpanan, dan suhu berperan penting dalam mekanisme pembentukan kristal dalam air kemih. Endapan urat sering ditemukan dalam pht air kemih yang asam pada suhu 4°C. Urat tidak berbentuk (amorp) merupakan endapan urat yang paling sering dijumpai dalam kondisi tersebut. Namun, hal ini tidak bermakna secara klinis. Bentuk urat yang lain yang dapat dijumpai dalam air kemih yaitu asam urat (acids urates) dan urat

![Gambar 1. a. Mean plot kadar kreatinin air kemih yang segera diperiksa, disimpan pada suhu antara 2–8°C dan yang kamar selama 24 jam. b. Mean plot kadar asam urat air kemih yang segera diperiksa, disimpan pada suhu antara 2–8°C dan yang kamar selama 24 jam](image-url)
Kristal asam urat biasanya dijumpai di pasien dengan penyakit gout dan tumor lysis syndrome. Endapan urat akan larut setelah penambahan asam dan dengan pemaranisan.

Urat anofel dalam jumlah banyak yang bermakna secara klinis dapat ditentukan dengan pemeriksaan air kemih secara mikroskopi. Beberapa faktor gangguan merupakan masalah penting dalam pemeriksaan sedimen air kemih, sehingga ada kemungkinan bahwa tidak ada perlakuan khusus pada penampungan air kemih pada pemeriksaan asam urat secara kuantitatif. Secara sempurna suhu spesimen air kemih dijaga sesuai dengan suhu tubuh dan segera dialanisi.

Untuk menghindari kebanyakan pengendapan urat, spesimen air kemih sebaiknya disimpan pada suhu lemaru pendingin jika tidak mungkin dialanisi dalam waktu dua (2) jam setelah ditangkap. Penyimpanan di suhu lemaru pendingin dapat menekan perkembangan bakteri, mengurangi jumlah (cast) dalam air kemih dan memperlambat perubahan pH dan pencampuran air kemih.

Apabila spesimen air kemih 24 jam digunakan untuk penentuan asam urat secara kuantitatif, bukti tertulis GP13-P NCCLS menyebutkan bahwa spesimen air kemih sebaiknya tidak disimpan dalam lemari pendingin. Tidak ada perbedaan pengenceran hal tersebut. Namun, ditekankan bahwa lemari pendingin dapat secara khusus mempengaruhi penentuan asam urat dalam air kemih, sepanjang endapan urat kembali melarut sebelum dialanisi. Tidak ada sarana dalam bukti tertulis GP16-A2 NCCLS yang menyebutkan bahwa spesimen air kemih sebaiknya tidak disimpan dalam lemari pendingin sebelum diperiksa asam uratnya. Hal ini berarti tidak ada perlakuan khusus untuk spesimen air kemih dalam pemeriksaan asam urat.

Dalam kajian yang dilakukan di sini, bahwa tidak ada penunjukan pengaruh suhu penyimpanan spesimen air kemih terhadap pemeriksaan kadar asam urat. Hal ini ditunjukkan dengan tidak ada perbedaan yang bermakna antara kadar asam urat air kemih yang segera diperiksa dan yang sebelumnya disimpan pada suhu kamar serta suhu 2–8°C selama 24 jam (P> 0,05). Sepintas tampak bahwa rerata kadar asam urat air kemih yang disimpan pada suhu antara 2–8°C dan yang kamar lebih rendah dari pada yang terkecit dan segera diperiksa. Namun, secara statistik antara ketiga perlakuan tersebut tidak menunjukkan perbedaan yang bermakna.

SIMPULAN

Hasil kajian studi yang dilakukan di sini menunjukkan bahwa tidak ada perbedaan yang bermakna antara kadar kreatinin dan asam urat dalam air kemih yang segera diperiksa sebelum ditangkap serta disimpan pada suhu kamar dan suhu antara 2–8°C selama 24 jam.

Para peneliti ini menyarankan, apabila terjadi penundaan analisis kadar kreatinin dan asam urat dalam air kemih lebih dari 24 jam. Di dalam beberapa keputusan terdapat saranan, bahwa bahan tersebut sebaiknya disimpan dalam lemari pendingin atau pembuuk untuk menjaga stabilitas kadar analit dalam air kemih khususnya kreatinin dan asam urat. Selama menemukan analit dalam air kemih perlu diperhatikan juga pH dari spesimen yang akan diperiksa.

DAFTAR PUSTAKA

Indonesian Journal of Clinical Pathology and Medical Laboratory, Vol. 21, No. 2 Maret 2015: 191–194