Jurnal Biometrika dan Kependudukan
ISSN 2302707X
Vol. 2 / No. 2 / Published : 2013-12
Order : 7, and page :148 - 157
Related with : Scholar Yahoo! Bing
Original Article :
Metode robust regression on ordered statistics (ros) pada data tersensor kiri dengan outlier
Author :
- Mashitah*1
- Arief Wibowo*2
- Diah Indriani *3
- Mahasiswa Fakultas Kesehatan Masyarakat
- Dosen Fakultas Kesehatan Masyarakat
- Dosen Fakultas Kesehatan Masyarakat
Abstract :
Robust Regression is the regression method that used if distribution from error abnormal and or some outlier that affected to model. This method is important tool to analyze data that affected by outlier with the result model that robust or resistant to outlier. Resistant estimate relatively not influence by large change on little part of data or little change on large part of data. Some estimation method in robust regression are M-estimation, Least Trimmed Square (LTS), MM estimation, S-estimation and Least Mean Square (LMS). This research use M-Estimation and Least Trimmed Square (LTS) estimation method. Best method determine with compare value of determination coefficient and value of Sum of Square Error (SSE) at approach that used.With founding best method to this robust regression could be predict patient age of onset to repetitive strain injury. Commonly, RSI patient don’t know when the onset of RSI. Variables that used to find model are patient age of onset when diagnosed RSI and work duration. Base on analysis results, was found that the best model to predict patient age of onset to Repetitive Strain Injury is: Ŷ = –8.0283 + 1.2751 X1. This best model found with Least Trimmed Square (LTS) approach.
Keyword :
age of onset, work duration, RSI, robust regression,
References :
Aris, M,(2006) Estimasi Parameter untuk Data Waktu Hidup yang Berdistribusi Rayleigh pada Data Tersensor Tipe II Beserta Simulasinya. Skripsi (Tidak dipublikasikan) Semarang : Universitas Negeri Semarang
Ardiyati, Hanna,(2011) Perbandingan Keefektifan Metode Regresi Robust Estimasi-M dan Estimasi-MM Karena Pengaruh Outlier dalam Analisis Regresi Linear (Contoh Kasus Data Produksi Padi di Jawa Tengah Tahun 2007) Semarang : Universitas Negeri Semarang
Curwin S.L,(2005) Rehabilitation after tendon injuries. In: Maffuli N. et al (eds). Tendon Injuries, Basic science and clinical medicine. New york : Springer-Verlag: 242–61
Drapper N.R., Smith, H,(1996) Applied Regression Analysis, 2 nd edition New york : John Wiley & Sons. Chapman and Hall
Fathurahman,(2009) Pemilihan Model Regresi Terbaik Menggunakan Metode Akaike’s Information Criterion dan Schwarz Information Criterion Samarinda : Universitas Mulawarman
Hanum, Herlina,(2011) Perbandingan Metode S
Archive Article
Cover Media | Content |
---|---|
![]() Volume : 2 / No. : 2 / Pub. : 2013-12 |
|