Jurnal Biometrika dan Kependudukan
ISSN 2302707X
Vol. 4 / No. 1 / Published : 2015-07
Order : 3, and page :14 - 24
Related with : Scholar Yahoo! Bing
Original Article :
Prediksi jumlah kasus baru kusta dengan metode
Author :
- Fitri Rachmillah Fadmi*1
- Mahasiswa Fakultas Kesehatan Masyarakat
Abstract :
Poisson regression was obtained from the Poisson distribution, which is a theoretical distribution associated with a discrete random variable count, where each event follows the Poisson distribution. Leprosy data in Buton isone example of the data count. The main problem of the Poisson regression is when applied to the spatial data,the heterogeneity will occur. Spatial heterogeneity arises because of the condition of data in each location is notthe same, both in terms of geographical, socio-cultural and other things that lie behind them. One impact of theemergence of spatial heterogeneity is regression parameters are varying spatially, so as to solve the problemson data spatial, the spatial modellingis done. Spatial modeling is appropriate for use Geographically WeightedPoisson Regression (GPWR). This study aims to determine the best models on the number of new cases of leprosyin Buton District in 2013. Studies conducted a study of non-reactive or unobtrusive method. The experiment wasconducted in Buton in Southeast Sulawesi province May-June 2014. Units of analysis in this study is the data newcases of leprosy in every district in Buton. The results showed Geographicaly Weighted Poisson Regression Model(GWPR) yields the smallest AIC value, so the best modeling for the number of new cases of leprosy in Buton isGeographicaly Weighted Poisson Regression Model (GWPR) than the model Poisson regression model.
Keyword :
poisson regression, geographicaly weighted, leprosy ,
References :
Fotheringham C., Brundson., A.S. Charlton. M.,(2002) Geographically Weighted Regression: the analysis of spatially varying relationship. England : John Wiley and Sons Ltd
Djauzi, R,(2009) Raih Kembali Kesehatan. Jakarta. : Penerbit Buku Kompas.
Departemen Kesehatan Republik Indonesia.,(2004) Indikator Indonesia Sehat 2010. Jakarta : Depkes RI
Budiarto, E., Dewi, A,(2003) Pengantar Epidemiologi Edisi 2 Jakarta. : Penerbit Buku Kedokteran EGC
Ardiyanti, S., T., Purhadi.,(2009) Pemodelan Angka Kematian Bayi dengan Pendekatan Geographically Weighted Poisson Regression (GWPR) di Provinsi Jawa Timur. ITS. Surabaya. Skripsi. Surabaya : FMIPA-ITS
Archive Article
Cover Media | Content |
---|---|
![]() Volume : 4 / No. : 1 / Pub. : 2015-07 |
|